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1 Introduction

A knot is a closed, piecewise-smooth curve of finite length in R3 that does not

intersect itself. A link is made up of one or more knots, which are pairwise disjoint.

Informally, two knots are equivalent if one can be formed from the other by moving

it around without allowing one piece of the knot to pass through another [2]. A

formal definition for the equivalence of two knots can be found in Godsil and Royle’s

text Algebraic Graph Theory.

One of the most interesting problems in knot theory is deciphering whether two

links are equivalent. Much progress has been made with polynomial link invariants.

A polynomial link invariant assigns each link a polynomial that is the same for all

equivalent links. If two links result in two distinct polynomials, then we can conclude

that the links are distinct. However, if two links have the same polynomial, then

our results are inconclusive; we cannot say whether they are equivalent or not.

Two famous polynomial link invariants are the Jones polynomial and the Alexan-

der polynomial. The Alexander polynomial was discovered in 1923 and the Jones in

1983. More recently is the discovery of the Homfly polynomial. Its name is derived

from the first letter of each of the co-discoverers’ last names. The Homfly poly-

nomial incorporates the information of both the Alexander and Jones polynomials

into a single polynomial.

The way in which we will illustrate links is to use link diagrams. For a given link,

the link diagram is obtained by projecting the knot onto R2 along with information

at the crossings to inform us of which piece lies under which. One way to think of

the link diagram is to picture “the shadow that a link would cast onto a wall if a

light were shone through it”[1].

If we view a knot as a single piece of string with its ends glued together, then
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for two links to be equivalent, we must be able “to get from one [link] to the other

by a series of slides and distortions of the string which do not tear it, and do not

pass one segment of string through another” [2]. The links are different if such

a sequence cannot be found. Determining whether two links are equivalent, by

proving that there is no such sequence, is difficult and cumbersome. This is why

polynomial link invariants, such as the Homfly polynomial, are so powerful. Rather

than attempting every sequence of allowable distortions to the string, the Homfly

polynomial is calculated for each of the two links, and the polynomials are then

compared.

Determining whether two links are equivalent is not a trivial task. For example,

one difficult problem in knot theory is determining whether a link is the unknot

(equivalent to a circle lying in R2) or not. It is not obvious by looking at a link

diagram whether it is equivalent to the unknot. For example, the two pictures below

are both the unknot, although they are represented quite differently [3].

The Homfly polynomial is useful in determining if a link is not equivalent to the

unknot. This is done by showing that its polynomial is different from that of the

polynomial of the unknot.

As mentioned earlier, sometimes the polynomial link invariant fails to provide

new information about the link. For example, the two knots above have the same

Homfly polynomial and are also equivalent, but the two knots below have the same

Homfly polynomial, and yet are not equivalent to each other. The two knots below
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were obtained from a handout posted online by Greg McNulty. It can be shown that

the Homfly polynomials for these two knots are the same and that their Kauffman

brackets (a partial link invariant) lead to the conclusion that they are different

knots.

There are three important operations that can be performed on links which do

not actually change the link. These three moves are called the Reidemeister moves

and are shown in the illustration below.

-�

I

-�

II

-�

III

A theorem in knot theory states that two links are equivalent if and only if one

link can be obtained from the other through a series of Reidemeister moves and

planar isotopies [1]. This fact allows us to change the way a link is represented

without actually changing the link, and consequently the Homfly polynomial. Also,

it gives us a way to verify that the Homfly polynomial is in fact a polynomial link
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invariant. Since the Homfly polynomial is unchanged by each of the Reidemeister

moves, then by the above theorem, the Homfly polynomial is a polynomial link

invariant. The Reidemeister moves are useful in changing links into their simplified

equivalents, and are useful as a checklist for proving a polynomial is a polynomial

link invariant.

2 Calculating the Homfly Polynomial

2.1 The Mechanics

The Homfly polynomial is not an ordinary polynomial; it is a 2-variable Laurent

polynomial in the variables l and m. Thus, the polynomials in this paper will be a

linear combination, using integer coefficients, of terms of the form: lkmn where k

and n are integers and l and m are the variables.

In order to calculate the Homfly polynomial for a link, we must first orient the

closed curve(s) making up the link. We then select one of the crossings on the link.

Each crossing is one of two kinds: {+} and {−}.

�
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Once a crossing is selected we will then form two new links by reversing the

crossing type or by deleting the crossing altogether. Suppose we selected a crossing

of type {+}, then we let L+ = L and we form two knots, L− and L0 from L+. L−

is obtained by changing the selected crossing to a {−} type crossing. L0 is achieved

by removing the selected crossing so that it now has the {0} form, which is shown
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below.

I �

0

If we had started with a crossing of type {−}, then we would have set L− = L

and we would have formed L+ and L0 from L− in a manner analogous to that

described above.

The Homfly polynomial is defined using skein relations, which are given below.

P (unknot) = 1

lP (L+) + l−1P (L−) + mP (L0) = 0

And for two knots, L1 and L2 that are not intertwined:

P (L1 ∪ L2) = −(l + l−1)m−1P (L1)P (L2).

With a crossing already selected, we then check which type of crossing it is

and solve the second skein relation for that particular type of crossing. That is,

if we have selected a crossing of type {+}, then we would solve the second skein

relationship for P (L+). The result is:

(1) P (L+) = −l−2(P (L−) + lmP (L0)).

Similarly, we find that:

(2) P (L−) = −l(lP (L+) + mP (L0)).

If we have selected a crossing of type {+}, then we would use Equation (1).

Next we would find P (L−) by redrawing the knot with the {+} crossing changed
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to a {−} crossing. The new link is called L−. Its polynomial is found by either

choosing a crossing and repeating the process or if L− has no crossings, then its

polynomial can be found directly by using the first and third skein relations. We

then would do the same to find P (L0). First we would redraw L+ = L without the

{+} crossing in order to obtain L0. P (L0) is then found by either picking a crossing

and repeating the process or, if L0 has no crossings, by calculating its polynomial

directly through the use of the first and third skein relations. In both cases we

would continue the same process until we reach the unknot, or a set of non-crossing

unknots; the Homfly polynomial for such knots can be found directly through the

first and third skein relations. Once this is done, we plug everything back into the

skein relations and find P (L+),which gives us the Homfly polynomial of our knot.

2.2 The Hopf Link Example

To illustrate this algorithm, we will demonstrate the calculation of the Homfly

polynomial for the one of the orientations of the well-known Hopf link. We will call

the Hopf link H.

Let us note that the Homfly polynomial of a knot does not depend on the

orientation, but for a link it does. In this example we will be calculating the Homfly

polynomial of the orientation of H shown below. We will call this oriented link H+

since its crossings are all of the {+} type. To calculate the Homfly polynomial, we

will start by using a skein relation involving a selected crossing.
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The selection is arbitrary. For this example we will select the bottom crossing

which is a {+} crossing. Since we are labeling the link by H+, we will use the skein

relationship:

P (H+
+) = −l−2(P (H+

−) + lmP (H+
0))

When we redraw H+ by reversing the selected crossing , that is we change the

strand crossing over to crossing under, we get H+
−:

By performing a Reidemeister II move, we can redraw this link equivalently

as two independent unknots. By using the skein relationship for links that are

not intertwined, we see that P (H+
−) = −(l + l−1)m−1P (unknot)P (unknot) =

−lm−1 − l−1m−1. When we redraw our H+ by removing the selected crossing, the

resulting knot is H+
0.
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By performing a Reidemeister I move, we can redraw this link equivalently as the un-

knot. Thus, P (H+
0) = 1. Now we plug our results into:P (H+

+) = −l−2(P (H+
−)+

lmP (H+
0)) and we get

P (H+
+) = −l−2(−lm−1 − l−1m−1 + lm) = l−1m−1 + l−3m−1 − l−1m

This is the Homfly polynomial for our particular orientation of the Hopf link, H+.

3 Statement of the Problem

The goal of this paper is to find the Homfly polynomial for each knot in a specific

family of knots. This family of knots is generated from placing the Whitehead link

(see picture below) into a solid torus, slicing the torus at a spot where the White-

head has no crossings and then twisting the torus 360◦ in either direction an integral

number of times. Let L(n) denote the knot obtained by twisting the torus 360◦, n

times. Note that n is an integer. Let the twists be towards the center of the torus

for positive n and away from the center for negative n. Below are some pictures to

help illustrate this idea:
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4 Motivation for the Problem

A paper by Masaharu Kuono, Kimihiko Motegi, and Tetsuo Shibuya entitled Twist-

ing and Knot Types, has the following abstract.

Let K be a trivial or nontrivial knot lying in a solid torus V , knotted

or unknotted in S3. This paper studies whether the isotopy type and the type of K

are changed by twisting homeomorphisms of V . Denote a twisting homeomorphism

on V of n twists by hn....Finally, it is proved that if K is a trivial knot in an

unknotted solid torus V with [wrapping number] Wv(K) ≥ 2, then for every integer

n 6= 0, hn(K) is nontrivial except when K is homotopic in V to a (2,1)-curve on

the boundary of V , and in which case hn(K) is trivial only when n = 0 or n = 1.

In this paper we will show that when the Whitehead link is lying in a solid

torus, then hn(Whitehead) = L(n) is nontrivial for all n 6= 0 and that each L(n) is

distinct. This will be shown by calculating the Homfly polynomial for L(n). This

goes beyond what can be concluded from the above abstract. Since the Whitehead

link is clearly a trivial knot, not a (2,1)-curve on the boundary of the solid torus,

and has wrapping number WV (Whitehead) = 2, then by the work in Twisting and

Knot Types, we can conclude that hn(Whitehead) = L(n) is nontrivial for all n 6= 0.
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This paper, through the use of the Homfly polynomial, will prove this and more.

This paper will, in addition, give a general formula for the Homfly polynomial of

L(n) as well as prove that each knot L(n) is distinct.

5 Solution to the Problem

5.1 Twisting Toward the Center of the Torus

We will first begin by calculating the Homfly polynomial for the first few twists

(twisting towards the center of the torus). The knot resulting from one twist is

shown below. We will call this knot L(1) and we will start off by finding the Homfly

polynomial for this knot.

We must first orient the curve, and then pick a crossing. Below is a picture

illustrating which crossing we picked and the orientation.

L(1)−

Because of the type of crossing we picked,{−}, we will be using the skein rela-

tionship:

P (L(1)−) = −l(lP (L(1)+) + mP (L(1)0))

to find the Homfly polynomial of L(1).

One thing that we should note is that the Whitehead link is equivalent to the
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unknot. This can be shown through a series of Reidemeister moves.

Let us first examine the knot obtained by changing our chosen crossing so that

the strand crossing over is now crossing under. This knot is L(1)+.

By a Reidemeister II move, we see that L(1)+ is equivalent to the Whitehead link,

which, in turn, is equivalent to the unknot and thus P (L(1)+) = 1.

Next, we will look at L(1)0.

In this case, a Reidemeister I move changes the link to the link H+. Since we have

already calculated the Homfly polynomial for the H+, we get the result: P (L(1)0) =

l−1m−1 + l−3m−1 − l−1m. Now we will put together our findings for P (L(1)+) and

P (L(1)0) into the skein relationship P (L(1)−) = −l(lP (L(1)+) + mP (L(1)0)). The
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result is:P (L(1)−) = −l(l(1) + m(l−1m−1 + l−3m−1 − l−1m)). When simplified, we

get:

P (L(1)) = m2 − l2 − 1− l−2.

Let L(2) be the link generated, as described above, by twisting towards the center

360◦, two times. Again, we will first orient the knot and then select a crossing. The

crossing we have selected is illustrated in the picture below.

Since the crossing has type−, we will, again, be using the skein relationship:P (L(2)−) =

−l(lP (L(2)+) + mP (L(2)0)). Below are drawings representing L(2)+ and L(2)0 re-

spectively.

Note that by a Reidemeister II move, L(2)+ can be transformed into L(1) and

that by three Reidemeister I moves, L(2)0 can be transformed into H+. Thus,
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P (L(2)) = −l(lP (L(1)) + mP (H+)) = −l(l(m2 − l2 − 1 − l−2) + m(l−1m−1 +

l−3m−1 − l−1m)), and simplifying this expression, we get the result:

P (L(2)) = m2 − l2m2 + l2 + l4 − l−2.

Now let us look at L(3) (obtained from 3 twists). Again, we will choose a cross-

ing and the one chosen is illustrated below.

Because of the type of crossing it is, we will use the skein relationship: P (L(3)−) =

−l(lP (L(3)+) + mP (L(3)0)). It can be shown that L(3)+ is equivalent to L(2)

through Reidemeister II moves and that L(3)0 is equivalent to H+ through Reide-

meister I moves. Thus,P (L(3)−) = −l(lP (L(2)) + mP (H+)) = −l(l(m2 − l2m2 +

l2 + l4 − l−2) + m(l−1m−1 + l−3m−1 − l−1m)). Simplifying this expression gives us

the result:

P (L(3)) = m2 + l4m2 − l2m2 − l6 − l4 − l−2.

Let us now look at , the knot obtained from n twists. We will follow the pattern

set forth already and select the bottom crossing furthest to the left, as is illustrated

below.
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Because of the type of crossing it is, we will use the skein relationship: P (L(n)−) =

−l(lP (L(n)+)+mP (L(n)0)). From our previous work, it should be clear that a Rei-

demeister II move will transform L(n)+ into L(n − 1) and 2n − 1 Reidemeister I

moves will transform L(n)0 into H+. Noting this fact we can rewrite our Hom-

fly polynomial expression for L(n) as: P (L(n)) = −l(lP (L(n − 1)) + mP (H+)) =

−l(lP (L(n− 1)) + m(l−1m−1 + l−3m−1 − l−1m))). That is,

P (L(n)) = m2 − l2P (L(n− 1))− 1− l−2.

Now we have a recursive formula for the Homfly polynomial of L(n). From this

and our result for L(3), we get that P (L(4)) = m2−l6m2+l4m2−l2m2+l8+l6−l−2.

This suggests the following formula for L(n).

P (L(n)) = m2((−1)n−1l2(n−1) + (−1)n−2l2(n−2) + · · ·

· · ·+ (−1)2l2(2) + (−1)1l2(1) + (−1)0l2(0)) + (−1)n(l2n + l2(n−1))− l−2.

We will prove this is the correct formula for L(n) by the method of mathematical

induction. First we must show that our formula is correct for a specific n. Note

that when n = 0, then P (L(n)) = (−1)0(l2(0) + l2(0−1)) − l−2 = 1 + l−2 − l−2 = 1.

14
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This is correct, since we know that the Whitehead link is equivalent to the unknot

and its polynomial is 1. Thus we have completed our first step of the induction.

Next, let us assume that our formula is true for n = k where k is a nonnegative

integer. We will show that the formula also holds for n = k + 1.

From our recursive formula we have that P (L(k+1)) = m2−l2P (L(k))−1−l−2.

Since we are assuming that P (L(k)) = m2((−1)k−1l2(k−1) + (−1)k−2l2(k−2) + ... +

(−1)2l2(2) + (−1)1l2(1) + (−1)0l2(0)) + (−1)k(l2k + l2(k−1))− l−2, then we have:

P (L(k + 1)) = m2 − l2(m2((−1)k−1l2(k−1) + (−1)k−2l2(k−2) + · · ·

· · ·+ (−1)1l2(1) + (−1)0l2(0)) + (−1)k(l2k + l2(k−1))− l−2)− 1− l−2.

Some simplification gives us:

P (L(k + 1)) = m2((−1)kl2(k) + (−1)k−1l2(k−1) + ... · · ·

· · ·+ (−1)0l2(0)) + (−1)k+1(l2(k+1) + l2(k))− l−2.

Which is what we would get if we plugged in k + 1 into our proposed formula for

L(n). Thus, by mathematical induction, for any nonnegative integer n, it is the

case that

P (L(n)) = m2((−1)n−1l2(n−1) + (−1)n−2l2(n−2) + ... + · · ·

· · ·+ (−1)1l2(1) + (−1)0l2(0)) + (−1)n(l2n + l2(n−1))− l−2.

Note that whenever n 6= 0 then P (L(n)) 6= 1 and hence is nontrivial. Also, note

that for any two distinct positive integers m and n, P (L(m)) 6= P (L(n)). Thus,

each twist gives a new, and distinctive, nontrivial knot.

15



www.manaraa.com

5.2 Twisting in the Other Direction

We expect similar results when we twist the torus in the opposite direction. One

twist in this direction yields the knot below:

The orientation and selected crossing are shown in the picture above. Notice

that no matter how we orient the curve, every crossing is of the {+} type. Thus we

must use the relation:

P (L(−1)+) = −l−2(P (L(−1)−) + lmP (L(−1)0)).

Below are the knots L(−1)− and L(−1)0, respectively.

By a Reidemeister II move, L(−1)− becomes the Whitehead link and by a

Reidemeister I move, L(−1)0 becomes H+, our orientation of the Hopf link. Thus,

P (L(−1)−) = 1 and P (L(−1)0)) = l−1m−1 + l−3m−1 − l−1m. Using the above
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mentioned skein relation, we get:

P (L(−1)+) = −2l−2 − l−4 + l−2m2.

Similar to what happened when we twisted towards the center of the torus, we

can find a recurrence relation for L(−n) where n is a nonnegative integer. We will

orient L(−n), as shown below, and use the crossing that is labeled to find the Hom-

fly polynomial of L(−n).

Below are the pictures of L(−n)− and L(−n)0.

17
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Clearly L(−n)− is equivalent to L(−n + 1) by a Reidemeister II move and that

L(−n)0 is equivalent to H+ by 2n − 1 Reidemeister I moves. Thus P (L(−n)−) =

P (L(−n + 1)) and P (L(−n)0) = P (H+). This gives us the recurrence relation:

P (L(−n)+) = −l−2(P (L(−n+1))+lm(P (H+)) = −l−2P (L(−n+1))−l−2−l−4+m2l−2.

Using this recurrence relation, it can be shown that P (L(−2)) = m2(−l−4 +

l−4) + l−6 + l−4 − l−2 and P (L(−3)) = m2(l−6 − l−4 + l−2)− l−6 − l−8 − l−2.

This suggests the formula:

P (L(−n)) = (−1)n(l−2n + l−2(n−1)) + m2((−1)−n+1l2(−n) + (−1)−n+2l2(−n+1) + · · ·

· · ·+ (−1)2l2(−1))− l−2.

This can be proven to be the exact formula for P (L(−n)) where n is a nonneg-

ative integer. Its proof is similar to the proof for P (L(n)) where n is a nonnegative

integer. The proof consists of using the recurrence relation involving P (L(−n))

along with the method of mathematical induction.

From the formula for P (L(−n)) we can see that each twist gives a unique knot

and that each twist provides a nontrivial knot. This is as we expected.

In conclusion, we find from our proven formula for L(n) that if n 6= 0 then

P (L(n)) is nontrivial. In addition, we see that if m and n are distinct integers, then

P (L(m)) 6= P (L(n)). Thus, each knot in our family of knots is distinct.

18
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